Class JEE Mathematics Sets, Relations, and Functions Q #1086
COMPETENCY BASED
REMEMBER
4 Marks 2023 JEE Main 2023 (Online) 8th April Morning Shift NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.

More from this Chapter

MCQ_SINGLE
Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Then the relation $R = \{(x, y) \in A \times A : x + y = 7\}$ is :
MCQ_SINGLE
Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and R be a relation on A defined by $xRy$ if and only if $2x - y \in \{0, 1\}$. Let $l$ be the number of elements in $R$. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to:
NUMERICAL
Let $A = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\min \,\{ i,j\} } } $ and $B = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\max \,\{ i,j\} } } $. Then A + B is equal to _____________.
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
View All Questions