cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1033
COMPETENCY BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2023
JEE Main 2023 (Online) 1st February Morning Shift
MCQ SINGLE
Let $R$ be a relation on $\mathbb{R}$, given by $R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is an irrational number} \}$. Then $R$ is
(A)
an equivalence relation
(B)
reflexive and symmetric but not transitive
(C)
reflexive and transitive but not symmetric
(D)
reflexive but neither symmetric nor transitive
AI Explanation
Prev
Next
Correct Answer: D
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
Let $S = \mathbb{N} \cup \{0\}$. Define a relation R from S to $\mathbb{R}$ by: $R = \{(x, y) : \log_e y = x \log_e (\frac{2}{5}), x \in S, y \in \mathbb{R}\}$. Then, the sum of all the elements in the range of $R$ is equal to:
MCQ_SINGLE
Let $A = {n \in [100, 700] \cap N : n$ is neither a multiple of 3 nor a multiple of 4}. Then the number of elements in $A$ is
MCQ_SINGLE
Let $A = {x \in (0, \pi) - {\frac{\pi}{2}} : \log_{(2/\pi)} |\sin x| + \log_{(2/\pi)} |\cos x| = 2}$ and $B = {x \ge 0 : x(x-4) - 3|x-2| + 6 = 0}$. Then $n(A \cup B)$ is equal to :
MCQ_SINGLE
Let $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on the set $\{1, 2, 3, 4\}$. Then the minimum number of elements, needed to be added in $R$ so that $R$ becomes an equivalence relation, is:
MCQ_SINGLE
The minimum number of elements that must be added to the relation $R = \{(a, b), (b, c)\}$ on the set $\{a, b, c\}$ so that it becomes symmetric and transitive is :
View All Questions