Class JEE Mathematics Sets, Relations, and Functions Q #1070
KNOWLEDGE BASED
APPLY
4 Marks 2012 AIEEE 2012 MCQ SINGLE
Let $X = {1, 2, 3, 4, 5}$. The number of different ordered pairs $(Y, Z)$ that can be formed such that $Y \subseteq X$, $Z \subseteq X$ and $Y \cap Z$ is empty, is:
(A) $3^5$
(B) $2^5$
(C) $5^3$
(D) $5^2$
Correct Answer: A
Explanation
For any element $x_i$ present in $X$, 4 cases arise while making subsets $Y$ and $Z$.

Case 1: $x_i \in Y, x_i \in Z \implies Y \cap Z \neq \emptyset$

Case 2: $x_i \in Y, x_i \notin Z \implies Y \cap Z = \emptyset$

Case 3: $x_i \notin Y, x_i \in Z \implies Y \cap Z = \emptyset$

Case 4: $x_i \notin Y, x_i \notin Z \implies Y \cap Z = \emptyset$

Therefore, for every element, the number of ways is $3$ for which $Y \cap Z = \emptyset$.

Thus, the total number of ways is $3 \times 3 \times 3 \times 3 \times 3 = 3^5$ since the number of elements in set $X$ is $5$.

More from this Chapter

MCQ_SINGLE
An organization awarded $48$ medals in event 'A', $25$ in event 'B' and $18$ in event 'C'. If these medals went to total $60$ men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
MCQ_SINGLE
Consider the following relations $R = \{(x, y) | x, y$ are real numbers and $x = wy$ for some rational number $w\}$; $S = \{(\frac{m}{n}, \frac{p}{q}) | m, n, p$ and $q$ are integers such that $n, q \neq 0$ and $qm = pn\}$. Then
NUMERICAL
Let $S=\left\{p_1, p_2 \ldots, p_{10}\right\}$ be the set of first ten prime numbers. Let $A=S \cup P$, where $P$ is the set of all possible products of distinct elements of $S$. Then the number of all ordered pairs $(x, y), x \in S$, $y \in A$, such that $x$ divides $y$, is ________ .
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
View All Questions