Explanation
$R = \{(x, y) : y \in A_i, iff x \in A_i, 1 \le i \le k\}$
(1) Reflexive: $(a, a) \Rightarrow a \in A_i$ iff $a \in A_i$
(2) Symmetric: $(a, b) \Rightarrow a \in A_i$ iff $b \in A_i$. $(b, a) \in R$ as $b \in A_i$ iff $a \in A_i$
(3) Transitive: $(a, b) \in R$ & $(b, c) \in R$. $\Rightarrow a \in A_i$ iff $b \in A_i$ & $b \in A_i$ iff $c \in A_i$. $\Rightarrow a \in A_i$ iff $c \in A_i$. $\Rightarrow (a, c) \in R$.
Therefore, the relation is an equivalence relation.