cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1069
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2015
JEE Main 2015 (Offline)
MCQ SINGLE
Let A and B be two sets containing four and two elements respectively. Then, the number of subsets of the set $A \times B$, each having atleast three elements are
(A)
219
(B)
256
(C)
275
(D)
510
AI Explanation
Prev
Next
Correct Answer: A
Explanation
Given, $n(A) = 4$, $n(B) = 2$
$\Rightarrow n(A \times B) = 8$
Total number of subsets of set $(A \times B) = 2^8$
Number of subsets of set $A \times B$ having no element (i.e. $\phi$) = $1$
Number of subsets of set $A \times B$ having one element = $^8C_1$
Number of subsets of set $A \times B$ having two elements = $^8C_2$
$\therefore$ Number of subsets having atleast three elements = $2^8 - (1 + ^8C_1 + ^8C_2)$ = $2^8 - 1 - 8 - 28$ = $2^8 - 37$ = $256 - 37 = 219$
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
NUMERICAL
The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is _________.
MCQ_SINGLE
Let R be a relation defined on $N$ as $aRb$ if $2a + 3b$ is a multiple of $5$, $a, b \in N$. Then R is
MCQ_SINGLE
Let $R_1 = \{(a, b) \in N \times N : |a - b| \le 13\}$ and $R_2 = \{(a, b) \in N \times N : |a - b| \ne 13\}$. Then on N :
NUMERICAL
Let $\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$ is ___________.
MCQ_SINGLE
Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$. Then :
View All Questions