MCQ_SINGLE
Let $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on the set $\{1, 2, 3, 4\}$. Then the minimum number of elements, needed to be added in $R$ so that $R$ becomes an equivalence relation, is:
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{3,6,7,9\}$. Then the number of elements in the set $\{C \subseteq A: C \cap B \neq \phi\}$ is ___________.