Class JEE Mathematics Sets, Relations, and Functions Q #1014
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 22nd January Morning Shift MCQ SINGLE
The number of non-empty equivalence relations on the set ${1, 2, 3}$ is :
(A) $7$
(B) $4$
(C) $5$
(D) $6$
Correct Answer: C
Explanation
An equivalence relation on a finite set is uniquely determined by its partition into equivalence classes. Counting the number of ways to partition the set ${1, 2, 3}$:

1. Three blocks: Each element in its own block. There is only one way: ${{1}, {2}, {3}}$.

2. Two blocks: We can have ${{1, 2}, {3}}$, ${{1, 3}, {2}}$, or ${{2, 3}, {1}}$. There are 3 ways.

3. One block: All elements together. There is only one way: ${{1, 2, 3}}$.

In total, there are $1 + 3 + 1 = 5$ distinct partitions, which means there are 5 equivalence relations on the set ${1, 2, 3}$.

More from this Chapter

MCQ_SINGLE
Let $R$ be the set of real numbers. Statement I: $A = \{(x, y) \in R \times R: y - x \text{ is an integer }\}$ is an equivalence relation on $R$. Statement II: $B = \{(x,y) \in R \times R: x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation on $R$.
MCQ_SINGLE
Let $X = R \times R$. Define a relation R on X as: $(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$ Statement I: $R$ is an equivalence relation. Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y)R(a, b)\}$ represents a line parallel to $y = x$. In the light of the above statements, choose the correct answer from the options given below:
MCQ_SINGLE
Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$. Then :
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
4 Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.
View All Questions