cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #995
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2025
JEE Main 2025 (Online) 7th April Evening Shift
MCQ SINGLE
Let $A = { (\alpha, \beta ) \in R \times R : |\alpha - 1| \leq 4$ and $|\beta - 5| \leq 6 }$
and $B = { (\alpha, \beta ) \in R \times R : 16(\alpha - 2)^{2}+ 9(\beta - 6)^{2} \leq 144 }$.
Then
(A)
A $A \subset B$
(B)
B $B \subset A$
(C)
C neither $A \subset B$ nor $B \subset A$
(D)
D $A \cup B = { (x, y) : -4 \leqslant x \leqslant 4, -1 \leqslant y \leqslant 11 }$
AI Explanation
Prev
Next
Correct Answer: B
Explanation
$A: |x-1| \leq 4$ and $|y-5| \leq 6$
$\Rightarrow -4 \leq x-1 \leq 4 \Rightarrow -6 \leq y-5 \leq 6$
$\Rightarrow -3 \leq x \leq 5 \Rightarrow -1 \leq y \leq 11$
$B : 16(x-2)^{2} + 9(y-6)^{2} \leq 144$
$B : \frac{(x-2)^{2}}{9} + \frac{(y-6)^{2}}{16} \leq 1$
From Diagram $B \subset A$
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
The number of elements in the set {$x \in R : (|x| - 3) |x + 4| = 6$} is equal to :
MCQ_SINGLE
Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is :
NUMERICAL
26 The sum of all the elements of the set $$\{ \alpha \in \{ 1,2,.....,100\} :HCF(\alpha ,24) = 1\} $$ is __________.
MCQ_SINGLE
Let $S = {1, 2, 3, … , 100}$. The number of non-empty subsets A of S such that the product of elements in A is even is :
MCQ_SINGLE
Consider the sets $A = \{(x, y) \in R \times R : x^2 + y^2 = 25\}$, $B = \{(x, y) \in R \times R: x^2 + 9y^2 = 144\}$, $C = \{(x, y) \in Z \times Z: x^2 + y^2 \leq 4\}$ and $D = A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
View All Questions