Class JEE Mathematics Sets, Relations, and Functions Q #1049
KNOWLEDGE BASED
APPLY
4 Marks 2021 JEE Main 2021 (Online) 17th March Morning Shift MCQ SINGLE
In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?
(A) Q and R
(B) None of these
(C) P and R
(D) P and Q
Correct Answer: B
Explanation
The question states that none of the students play all three games. This means that the intersection of all three sets (circles) in the Venn diagram must be empty. Observing the provided Venn diagrams (P, Q, and R), we see that in each case, there is an intersection between all three circles. Thus, none of the diagrams satisfy the condition that no student plays all three games.

Therefore, the correct answer is 'None of these'.

More from this Chapter

MCQ_SINGLE
Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on $A$ defined by $xRy$ if and only if $y = \max\{x, 1\}$. Let $l$ be the number of elements in R. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to
MCQ_SINGLE
Let $A = {n \in [100, 700] \cap N : n$ is neither a multiple of 3 nor a multiple of 4}. Then the number of elements in $A$ is
NUMERICAL
Let $S=\left\{p_1, p_2 \ldots, p_{10}\right\}$ be the set of first ten prime numbers. Let $A=S \cup P$, where $P$ is the set of all possible products of distinct elements of $S$. Then the number of all ordered pairs $(x, y), x \in S$, $y \in A$, such that $x$ divides $y$, is ________ .
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.
View All Questions