NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.
NUMERICAL
Let $\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$ is ___________.