Class JEE Mathematics Sets, Relations, and Functions Q #1114
COMPETENCY BASED
REMEMBER
4 Marks 2023 JEE Main 2023 (Online) 13th April Evening Shift NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________

More from this Chapter

MCQ_SINGLE
Let a relation $R$ on $N \times N$ be defined as: $(x_1, y_1) R (x_2, y_2)$ if and only if $x_1 \le x_2$ or $y_1 \le y_2$. Consider the two statements: (I) $R$ is reflexive but not symmetric. (II) $R$ is transitive Then which one of the following is true?
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
NUMERICAL
If A = {x $\in$ R : |x $-$ 2| > 1}, B = {x $\in$ R : $\sqrt {{x^2} - 3} $ > 1}, C = {x $\in$ R : |x $-$ 4| $\ge$ 2} and Z is the set of all integers, then the number of subsets of the set (A $\cap$ B $\cap$ C)c $\cap$ Z is ________________.
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
If $A = {x \in R : |x| < 2}$ and $B = {x \in R : |x – 2| \geq 3}$; then :
View All Questions