NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$. Define $B=\{T \subseteq A$ : either $1 \notin T$ or $2 \in T\}$ and $C=\{T \subseteq A: T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is ________________.
MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :
MCQ_SINGLE
Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on $A$ defined by $xRy$ if and only if $y = \max\{x, 1\}$. Let $l$ be the number of elements in R. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to