cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1011
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2025
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ SINGLE
Let $A = {(x, y) ∈ R × R : |x + y| ⩾ 3}$ and $B = {(x, y) ∈ R × R : |x| + |y| ≤ 3}$. If $C = {(x, y) ∈ A ∩ B : x = 0$ or $y = 0}$, then $\sum_{(x, y) ∈ C} |x + y|$ is :
(A)
18
(B)
24
(C)
15
(D)
12
AI Explanation
Prev
Next
Correct Answer: D
Explanation
From the image, we can determine that the points in set C are $(3,0)$, $(-3,0)$, $(0,3)$ and $(0,-3)$.
Thus, $C = {(3, 0), (-3, 0), (0, 3), (0, -3)}$.
$\sum |x + y| = |3 + 0| + |-3 + 0| + |0 + 3| + |0 + (-3)| = 3 + 3 + 3 + 3 = 12$.
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
Let $A = { (\alpha, \beta ) \in R \times R : |\alpha - 1| \leq 4$ and $|\beta - 5| \leq 6 }$ and $B = { (\alpha, \beta ) \in R \times R : 16(\alpha - 2)^{2}+ 9(\beta - 6)^{2} \leq 144 }$. Then
MCQ_SINGLE
Let $X = R \times R$. Define a relation R on X as: $(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$ Statement I: $R$ is an equivalence relation. Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y)R(a, b)\}$ represents a line parallel to $y = x$. In the light of the above statements, choose the correct answer from the options given below:
MCQ_SINGLE
Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$ where each $X_i$ contains $10$ elements and each $Y_i$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_i$'s and exactly $6$ of sets $Y_i$'s, then $n$ is equal to:
MCQ_SINGLE
Let $N$ denote the set of all natural numbers. Define two binary relations on $N$ as $R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$ and $R_2 = \{(x, y) \in N \times N : x + 2y = 10\}$. Then :
NUMERICAL
26 The sum of all the elements of the set $$\{ \alpha \in \{ 1,2,.....,100\} :HCF(\alpha ,24) = 1\} $$ is __________.
View All Questions