cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1011
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2025
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ SINGLE
Let $A = {(x, y) ∈ R × R : |x + y| ⩾ 3}$ and $B = {(x, y) ∈ R × R : |x| + |y| ≤ 3}$. If $C = {(x, y) ∈ A ∩ B : x = 0$ or $y = 0}$, then $\sum_{(x, y) ∈ C} |x + y|$ is :
(A)
18
(B)
24
(C)
15
(D)
12
AI Explanation
Prev
Next
Correct Answer: D
Explanation
From the image, we can determine that the points in set C are $(3,0)$, $(-3,0)$, $(0,3)$ and $(0,-3)$.
Thus, $C = {(3, 0), (-3, 0), (0, 3), (0, -3)}$.
$\sum |x + y| = |3 + 0| + |-3 + 0| + |0 + 3| + |0 + (-3)| = 3 + 3 + 3 + 3 = 12$.
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
NUMERICAL
Let $A=\{1,2,3,4\}$ and $\mathrm{R}$ be a relation on the set $A \times A$ defined by $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$. Then the number of elements in $\mathrm{R}$ is ____________.
MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :
MCQ_SINGLE
Let a relation $R$ on $N \times N$ be defined as: $(x_1, y_1) R (x_2, y_2)$ if and only if $x_1 \le x_2$ or $y_1 \le y_2$. Consider the two statements: (I) $R$ is reflexive but not symmetric. (II) $R$ is transitive Then which one of the following is true?
NUMERICAL
Let X = {n $ \in $ N : 1 $ \le $ n $ \le $ 50}. If A = {n $ \in $ X: n is a multiple of 2} and B = {n $ \in $ X: n is a multiple of 7}, then the number of elements in the smallest subset of X containing both A and B is ________.
NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.
View All Questions