Class JEE Mathematics Sets, Relations, and Functions Q #995
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 7th April Evening Shift MCQ SINGLE
Let $A = { (\alpha, \beta ) \in R \times R : |\alpha - 1| \leq 4$ and $|\beta - 5| \leq 6 }$

and $B = { (\alpha, \beta ) \in R \times R : 16(\alpha - 2)^{2}+ 9(\beta - 6)^{2} \leq 144 }$.

Then
(A) A $A \subset B$
(B) B $B \subset A$
(C) C neither $A \subset B$ nor $B \subset A$
(D) D $A \cup B = { (x, y) : -4 \leqslant x \leqslant 4, -1 \leqslant y \leqslant 11 }$
Correct Answer: B
Explanation
$A: |x-1| \leq 4$ and $|y-5| \leq 6$
$\Rightarrow -4 \leq x-1 \leq 4 \Rightarrow -6 \leq y-5 \leq 6$
$\Rightarrow -3 \leq x \leq 5 \Rightarrow -1 \leq y \leq 11$
$B : 16(x-2)^{2} + 9(y-6)^{2} \leq 144$
$B : \frac{(x-2)^{2}}{9} + \frac{(y-6)^{2}}{16} \leq 1$

From Diagram $B \subset A$

More from this Chapter

MCQ_SINGLE
Let $X = R \times R$. Define a relation R on X as: $(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$ Statement I: $R$ is an equivalence relation. Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y)R(a, b)\}$ represents a line parallel to $y = x$. In the light of the above statements, choose the correct answer from the options given below:
NUMERICAL
Let X = {n $ \in $ N : 1 $ \le $ n $ \le $ 50}. If A = {n $ \in $ X: n is a multiple of 2} and B = {n $ \in $ X: n is a multiple of 7}, then the number of elements in the smallest subset of X containing both A and B is ________.
MCQ_SINGLE
Let $R$ be the real line. Consider the following subsets of the plane $R \times R$: $S = {(x, y) : y=x+1 ext{ and } 0
MCQ_SINGLE
Let $A = {0, 1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $(x, y) \in R$ if and only if $\max{x, y} \in {3, 4}$. Then among the statements (S1): The number of elements in $R$ is $18$, and (S2): The relation $R$ is symmetric but neither reflexive nor transitive
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
View All Questions