NUMERICAL
Let $\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$ is ___________.
NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.
MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then:
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.