Finding the elements of R:
We have $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and $2x - y \in \{0, 1\}$. We need to find all pairs $(x, y)$ such that $x, y \in A$ and $2x - y = 0$ or $2x - y = 1$.
Therefore, $R = \{(-1, -2), (0, 0), (1, 2), (-1, -3), (0, -1), (1, 1), (2, 3)\}$. So, $l = 7$.
Making R reflexive:
For R to be reflexive, it must contain all pairs $(x, x)$ for all $x \in A$. The pairs are: $(-3, -3), (-2, -2), (-1, -1), (0, 0), (1, 1), (2, 2), (3, 3)$. R already contains $(0, 0)$ and $(1, 1)$. The pairs to be added are: $(-3, -3), (-2, -2), (-1, -1), (2, 2), (3, 3)$. So, $m = 5$.
Making R symmetric:
After making R reflexive, we have $R = \{(-1, -2), (0, 0), (1, 2), (-1, -3), (0, -1), (1, 1), (2, 3), (-3, -3), (-2, -2), (-1, -1), (2, 2), (3, 3)\}$.
For R to be symmetric, if $(x, y) \in R$, then $(y, x) \in R$.
So, $n = 5$.
Calculating l + m + n:
$l + m + n = 7 + 5 + 5 = 17$.
Correct Answer: 17
AI generated content. Review strictly for academic accuracy.