Class JEE Mathematics Sets, Relations, and Functions Q #1006
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 29th January Evening Shift MCQ SINGLE
Let $S = \mathbb{N} \cup \{0\}$. Define a relation R from S to $\mathbb{R}$ by: $R = \{(x, y) : \log_e y = x \log_e (\frac{2}{5}), x \in S, y \in \mathbb{R}\}$. Then, the sum of all the elements in the range of $R$ is equal to:
(A) $\frac{3}{2}$
(B) $\frac{10}{9}$
(C) $\frac{5}{2}$
(D) $\frac{5}{3}$
Correct Answer: D
Explanation
Given $S = \{0, 1, 2, 3, ...\}$. Also, $\log_e y = x \log_e (\frac{2}{5})$.
This implies $y = (\frac{2}{5})^x$.
Since $x \in S$, $x$ can take values $0, 1, 2, 3, ...$.
The required sum is $1 + (\frac{2}{5})^1 + (\frac{2}{5})^2 + (\frac{2}{5})^3 + ... = \frac{1}{1 - \frac{2}{5}} = \frac{1}{\frac{3}{5}} = \frac{5}{3}$.

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Consider the sets $A = \{(x, y) \in R \times R : x^2 + y^2 = 25\}$, $B = \{(x, y) \in R \times R: x^2 + 9y^2 = 144\}$, $C = \{(x, y) \in Z \times Z: x^2 + y^2 \leq 4\}$ and $D = A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
NUMERICAL
Let $A=\{0,3,4,6,7,8,9,10\}$ and $R$ be the relation defined on $A$ such that $R=\{(x, y) \in A \times A: x-y$ is odd positive integer or $x-y=2\}$. The minimum number of elements that must be added to the relation $R$, so that it is a symmetric relation, is equal to ____________.
MCQ_SINGLE
Two sets A and B are as under : A = {$(a, b) ∈ R × R : |a - 5| < 1$ and $|b - 5| < 1$}; B = {$(a, b) ∈ R × R : 4(a - 6)^2 + 9(b - 5)^2 ≤ 36$}; Then
View All Questions