MCQ_SINGLE
Let $X = R \times R$. Define a relation R on X as: $(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$ Statement I: $R$ is an equivalence relation. Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y)R(a, b)\}$ represents a line parallel to $y = x$. In the light of the above statements, choose the correct answer from the options given below:
NUMERICAL
Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.
NUMERICAL
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that R1 = {(p, pn) : p is a prime and n $\ge$ 0 is an integer} and R2 = {(p, pn) : p is a prime and n = 0 or 1}. Then, the number of elements in R1 $-$ R2 is _______________.