Class JEE Mathematics Sets, Relations, and Functions Q #1043
KNOWLEDGE BASED
APPLY
4 Marks 2022 JEE Main 2022 (Online) 29th June Morning Shift MCQ SINGLE
Let a set $A = A_1 \cup A_2 \cup ..... \cup A_k$, where $A_i \cap A_j = \phi$ for $i \neq j$, $1 \le j, j \le k$. Define the relation R from A to A by $R = \{(x, y) : y \in A_i$ if and only if $x \in A_i, 1 \le i \le k\}$. Then, R is :
(A) reflexive, symmetric but not transitive.
(B) reflexive, transitive but not symmetric.
(C) reflexive but not symmetric and transitive.
(D) an equivalence relation.
Correct Answer: D
Explanation
$R = \{(x, y) : y \in A_i, iff x \in A_i, 1 \le i \le k\}$

(1) Reflexive: $(a, a) \Rightarrow a \in A_i$ iff $a \in A_i$

(2) Symmetric: $(a, b) \Rightarrow a \in A_i$ iff $b \in A_i$. $(b, a) \in R$ as $b \in A_i$ iff $a \in A_i$

(3) Transitive: $(a, b) \in R$ & $(b, c) \in R$. $\Rightarrow a \in A_i$ iff $b \in A_i$ & $b \in A_i$ iff $c \in A_i$. $\Rightarrow a \in A_i$ iff $c \in A_i$. $\Rightarrow (a, c) \in R$.

Therefore, the relation is an equivalence relation.

More from this Chapter

NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.
NUMERICAL
Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $R$ is __________.
NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.
MCQ_SINGLE
Let $R$ be the set of real numbers. Statement I: $A = \{(x, y) \in R \times R: y - x \text{ is an integer }\}$ is an equivalence relation on $R$. Statement II: $B = \{(x,y) \in R \times R: x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation on $R$.
MCQ_SINGLE
Let $A = {1, 2, 3, ..., 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
View All Questions