NUMERICAL
The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then:
MCQ_SINGLE
Let $A = \{-2, -1, 0, 1, 2, 3\}$. Let R be a relation on $A$ defined by $xRy$ if and only if $y = \max\{x, 1\}$. Let $l$ be the number of elements in R. Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l + m + n$ is equal to