Class JEE Mathematics Sets, Relations, and Functions Q #1105
COMPETENCY BASED
REMEMBER
4 Marks 2024 JEE Main 2024 (Online) 9th April Morning Shift NUMERICAL
Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $R$ is __________.

More from this Chapter

MCQ_SINGLE
Two newspapers A and B are published in a city. It is known that $25$% of the city populations reads A and $20$% reads B while $8$% reads both A and B. Further, $30$% of those who read A but not B look into advertisements and $40$% of those who read B but not A also look into advertisements, while $50$% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is :-
NUMERICAL
Let S = {1, 2, 3, 5, 7, 10, 11}. The number of non-empty subsets of S that have the sum of all elements a multiple of 3, is _____________.
MCQ_SINGLE
Let $R_1$ and $R_2$ be two relations defined on $R$ by $aR_1b \Leftrightarrow ab \ge 0$ and $aR_2b \Leftrightarrow a \ge b$. Then,
MCQ_SINGLE
Consider the sets $A = \{(x, y) \in R \times R : x^2 + y^2 = 25\}$, $B = \{(x, y) \in R \times R: x^2 + 9y^2 = 144\}$, $C = \{(x, y) \in Z \times Z: x^2 + y^2 \leq 4\}$ and $D = A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
View All Questions