MCQ_SINGLE
Let $A = {-3, -2, -1, 0, 1, 2, 3}$. Let R be a relation on A defined by $xRy$ if and only if $0 \le x^2 + 2y \le 4$. Let $l$ be the number of elements in R and $m$ be the minimum number of elements required to be added in R to make it a reflexive relation. Then $l + m$ is equal to
MCQ_SINGLE
Let $A = {2, 3, 4, 5, ....., 30}$ and '$\simeq$' be an equivalence relation on $A \times A$, defined by $(a, b) \simeq (c, d)$, if and only if $ad = bc$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4, 3)$ is equal to :