NUMERICAL
Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.
NUMERICAL
The minimum number of elements that must be added to the relation R = {(a, b), (b, c), (b, d)} on the set {a, b, c, d} so that it is an equivalence relation, is __________.
MCQ_SINGLE
Let $A = {0, 1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $(x, y) \in R$ if and only if $\max{x, y} \in {3, 4}$. Then among the statements
(S1): The number of elements in $R$ is $18$, and
(S2): The relation $R$ is symmetric but neither reflexive nor transitive
MCQ_SINGLE
Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is :
MCQ_SINGLE
Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation $R$ is: