MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :
NUMERICAL
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that R1 = {(p, pn) : p is a prime and n $\ge$ 0 is an integer} and R2 = {(p, pn) : p is a prime and n = 0 or 1}. Then, the number of elements in R1 $-$ R2 is _______________.
MCQ_SINGLE
Let $A = {2, 3, 4, 5, ....., 30}$ and '$\simeq$' be an equivalence relation on $A \times A$, defined by $(a, b) \simeq (c, d)$, if and only if $ad = bc$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4, 3)$ is equal to :
NUMERICAL
Let R1 and R2 be relations on the set {1, 2, ......., 50} such that R1 = {(p, pn) : p is a prime and n $\ge$ 0 is an integer} and R2 = {(p, pn) : p is a prime and n = 0 or 1}. Then, the number of elements in R1 $-$ R2 is _______________.