MCQ_SINGLE
Let $A = {1, 2, 3, ..., 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
MCQ_SINGLE
Let the relations $R_1$ and $R_2$ on the set $X = \{1, 2, 3, ..., 20\}$ be given by $R_1 = \{(x, y) : 2x - 3y = 2\}$ and $R_2 = \{(x, y) : -5x + 4y = 0\}$. If $M$ and $N$ be the minimum number of elements required to be added in $R_1$ and $R_2$, respectively, in order to make the relations symmetric, then $M + N$ equals
MCQ_SINGLE
Let a set $A = A_1 \cup A_2 \cup ..... \cup A_k$, where $A_i \cap A_j = \phi$ for $i \neq j$, $1 \le j, j \le k$. Define the relation R from A to A by $R = \{(x, y) : y \in A_i$ if and only if $x \in A_i, 1 \le i \le k\}$. Then, R is :