MCQ_SINGLE
Consider the following two binary relations on the set $A = {a, b, c}$:
$R_1 = {(c, a), (b, b), (a, c), (c, c), (b, c), (a, a)}$ and
$R_2 = {(a, b), (b, a), (c, c), (c, a), (a, a), (b, b), (a, c)}$.
Then:
NUMERICAL
5 Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $R$ is __________.
NUMERICAL
Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on $\mathrm{A}$. Let $\mathrm{S}$ be the equivalence relation on $\mathrm{A}$ such that $R \subset S$ and the number of elements in $\mathrm{S}$ is $\mathrm{n}$. Then, the minimum value of $n$ is __________.