NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.
MCQ_SINGLE
Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is :
MCQ_SINGLE
Let $A = {2, 3, 4, 5, ....., 30}$ and '$\simeq$' be an equivalence relation on $A \times A$, defined by $(a, b) \simeq (c, d)$, if and only if $ad = bc$. Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4, 3)$ is equal to :