MCQ_SINGLE
Let $R = \{(1, 2), (2, 3), (3, 3)\}$ be a relation defined on the set $\{1, 2, 3, 4\}$. Then the minimum number of elements, needed to be added in $R$ so that $R$ becomes an equivalence relation, is:
MCQ_SINGLE
Consider the following relations $R = \{(x, y) | x, y$ are real numbers and $x = wy$ for some rational number $w\}$; $S = \{(\frac{m}{n}, \frac{p}{q}) | m, n, p$ and $q$ are integers such that $n, q \neq 0$ and $qm = pn\}$. Then
NUMERICAL
Let $A=\{1,2,3, \ldots \ldots \ldots \ldots, 100\}$. Let $R$ be a relation on $\mathrm{A}$ defined by $(x, y) \in R$ if and only if $2 x=3 y$. Let $R_1$ be a symmetric relation on $A$ such that $R \subset R_1$ and the number of elements in $R_1$ is $\mathrm{n}$. Then, the minimum value of $\mathrm{n}$ is _________.