Class JEE Mathematics Sets, Relations, and Functions Q #1131
COMPETENCY BASED
REMEMBER
4 Marks 2021 JEE Main 2021 (Online) 24th February Morning Shift NUMERICAL
Let A = {n $ \in $ N: n is a 3-digit number} B = {9k + 2: k $ \in $ N} and C = {9k + $l$: k $ \in $ N} for some $l ( 0 < l < 9)$ If the sum of all the elements of the set A $ \cap $ (B $ \cup $ C) is 274 $ \times $ 400, then $l$ is equal to ________.

More from this Chapter

NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
NUMERICAL
5 Let $A=\{2,3,6,7\}$ and $B=\{4,5,6,8\}$. Let $R$ be a relation defined on $A \times B$ by $(a_1, b_1) R(a_2, b_2)$ if and only if $a_1+a_2=b_1+b_2$. Then the number of elements in $R$ is __________.
NUMERICAL
Set A has m elements and set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m.n is ______.
MCQ_SINGLE
In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is
NUMERICAL
Let $$A = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\min \,\{ i,j\} } } $$ and $$B = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\max \,\{ i,j\} } } $$Then A + B is equal to _____________.
View All Questions