NUMERICAL
Let $\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$ is ___________.
NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$. Define $B=\{T \subseteq A$ : either $1 \notin T$ or $2 \in T\}$ and $C=\{T \subseteq A: T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is ________________.
NUMERICAL
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is __________.
NUMERICAL
Let $S=\left\{p_1, p_2 \ldots, p_{10}\right\}$ be the set of first ten prime numbers. Let $A=S \cup P$, where $P$ is the set of all possible products of distinct elements of $S$. Then the number of all ordered pairs $(x, y), x \in S$, $y \in A$, such that $x$ divides $y$, is ________ .