cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1011
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2025
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ SINGLE
Let $A = {(x, y) ∈ R × R : |x + y| ⩾ 3}$ and $B = {(x, y) ∈ R × R : |x| + |y| ≤ 3}$. If $C = {(x, y) ∈ A ∩ B : x = 0$ or $y = 0}$, then $\sum_{(x, y) ∈ C} |x + y|$ is :
(A)
18
(B)
24
(C)
15
(D)
12
AI Explanation
Prev
Next
Correct Answer: D
Explanation
From the image, we can determine that the points in set C are $(3,0)$, $(-3,0)$, $(0,3)$ and $(0,-3)$.
Thus, $C = {(3, 0), (-3, 0), (0, 3), (0, -3)}$.
$\sum |x + y| = |3 + 0| + |-3 + 0| + |0 + 3| + |0 + (-3)| = 3 + 3 + 3 + 3 = 12$.
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
NUMERICAL
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is __________.
MCQ_SINGLE
In a school, there are three types of games to be played. Some of the students play two types of games, but none play all the three games. Which Venn diagrams can justify the above statement?
MCQ_SINGLE
Let $A = {1, 2, 3, 4, 5}$. Let $R$ be a relation on $A$ defined by $xRy$ if and only if $4x \le 5y$. Let $m$ be the number of elements in $R$ and $n$ be the minimum number of elements from $A \times A$ that are required to be added to $R$ to make it a symmetric relation. Then $m + n$ is equal to :
MCQ_SINGLE
Let $A = {1, 2, 3, ..., 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
MCQ_SINGLE
Let R be a relation from the set ${1, 2, 3, …, 60}$ to itself such that $R = {(a, b) : b = pq}$, where $p, q \geqslant 3$ are prime numbers}. Then, the number of elements in R is :
View All Questions