cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1069
KNOWLEDGE BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2015
JEE Main 2015 (Offline)
MCQ SINGLE
Let A and B be two sets containing four and two elements respectively. Then, the number of subsets of the set $A \times B$, each having atleast three elements are
(A)
219
(B)
256
(C)
275
(D)
510
AI Explanation
Prev
Next
Correct Answer: A
Explanation
Given, $n(A) = 4$, $n(B) = 2$
$\Rightarrow n(A \times B) = 8$
Total number of subsets of set $(A \times B) = 2^8$
Number of subsets of set $A \times B$ having no element (i.e. $\phi$) = $1$
Number of subsets of set $A \times B$ having one element = $^8C_1$
Number of subsets of set $A \times B$ having two elements = $^8C_2$
$\therefore$ Number of subsets having atleast three elements = $2^8 - (1 + ^8C_1 + ^8C_2)$ = $2^8 - 1 - 8 - 28$ = $2^8 - 37$ = $256 - 37 = 219$
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
MCQ_SINGLE
Consider the sets $A = \{(x, y) \in R \times R : x^2 + y^2 = 25\}$, $B = \{(x, y) \in R \times R : x^2 + 9y^2 = 144\}$, $C = \{(x, y) \in Z \times Z : x^2 + y^2 \le 4\}$ and $D = A \cap B$. The total number of one-one functions from the set $D$ to the set $C$ is:
MCQ_SINGLE
Let $A = {n \in [100, 700] \cap N : n$ is neither a multiple of 3 nor a multiple of 4}. Then the number of elements in $A$ is
MCQ_SINGLE
The relation $R = \{(a, b) : gcd(a, b) = 1, 2a \neq b, a, b \in Z\}$ is:
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :
View All Questions