cbqfy
com
Competency Based Questions
Back to Chapter
Class JEE
Mathematics
Sets, Relations, and Functions
Q #1033
COMPETENCY BASED
APPLY
Bloom's Level: APPLY
Use information in new situations
4 Marks
2023
JEE Main 2023 (Online) 1st February Morning Shift
MCQ SINGLE
Let $R$ be a relation on $\mathbb{R}$, given by $R = \{(a, b) : 3a - 3b + \sqrt{7} \text{ is an irrational number} \}$. Then $R$ is
(A)
an equivalence relation
(B)
reflexive and symmetric but not transitive
(C)
reflexive and transitive but not symmetric
(D)
reflexive but neither symmetric nor transitive
AI Explanation
Prev
Next
Correct Answer: D
AI Tutor Explanation
Powered by Gemini
AI generated content. Review strictly for academic accuracy.
More from this Chapter
NUMERICAL
Let $A = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\min \,\{ i,j\} } } $ and $B = \sum\limits_{i = 1}^{10} {\sum\limits_{j = 1}^{10} {\max \,\{ i,j\} } } $. Then A + B is equal to _____________.
NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$ and $B=\{3,6,7,9\}$. Then the number of elements in the set $\{C \subseteq A: C \cap B \neq \phi\}$ is ___________.
NUMERICAL
The sum of all the elements of the set $\{ \alpha \in \{ 1,2,.....,100\} :HCF(\alpha ,24) = 1\} $ is __________.
NUMERICAL
The number of elements in the set $\left\{n \in \mathbb{N}: 10 \leq n \leq 100\right.$ and $3^{n}-3$ is a multiple of 7$\}$ is ___________.
MCQ_SINGLE
Let $R_1$ and $R_2$ be two relations defined on $R$ by $aR_1b \Leftrightarrow ab \ge 0$ and $aR_2b \Leftrightarrow a \ge b$. Then,
View All Questions