NUMERICAL
For $n \geq 2$, let $S_n$ denote the set of all subsets of $\{1,2, \ldots, n\}$ with no two consecutive numbers. For example $\{1,3,5\} \in S_6$, but $\{1,2,4\} \notin S_6$. Then $n\left(S_5\right)$ is equal to ________
MCQ_SINGLE
Let $A = {-3, -2, -1, 0, 1, 2, 3}$. Let R be a relation on A defined by $xRy$ if and only if $0 \le x^2 + 2y \le 4$. Let $l$ be the number of elements in R and $m$ be the minimum number of elements required to be added in R to make it a reflexive relation. Then $l + m$ is equal to