Explanation
Statement I: Reflexive: $(a_1, b_1) R (a_1, b_1) \Rightarrow b_1 = b_1$ (True). Symmetric: $(a_1, b_1) R (a_2, b_2) \Rightarrow b_1 = b_2$ and $(a_2, b_2) R (a_1, b_1) \Rightarrow b_2 = b_1$ (True). Transitive: $(a_1, b_1) R (a_2, b_2) \Rightarrow b_1 = b_2$ and $(a_2, b_2) R (a_3, b_3) \Rightarrow b_2 = b_3$. Thus, $b_1 = b_3$, so $(a_1, b_1) R (a_3, b_3)$ (True). Hence, relation $R$ is an equivalence relation, and Statement I is true. For Statement II: $(x, y) R (a, b) \Rightarrow y = b$. This represents a line $y=b$, which is parallel to the x-axis. It is not parallel to the line $y=x$. Therefore, Statement II is false.