Class JEE Mathematics Sets, Relations, and Functions Q #1007
KNOWLEDGE BASED
APPLY
4 Marks 2025 JEE Main 2025 (Online) 29th January Morning Shift MCQ SINGLE
Define a relation R on the interval $[0, π/2)$ by $x$ R $y$ if and only if $\sec^2x - \tan^2y = 1$. Then R is :
(A) both reflexive and symmetric but not transitive
(B) both reflexive and transitive but not symmetric
(C) reflexive but neither symmetric not transitive
(D) an equivalence relation
Correct Answer: D
Explanation
To check if the relation R is reflexive, symmetric, and transitive:

1. **Reflexive:**
Replace $y$ with $x$ in the given relation: $\sec^2x - \tan^2x = 1$. This is a trigonometric identity, so the relation is reflexive.

2. **Symmetric:**
Given $\sec^2x - \tan^2y = 1$, we can rewrite this as $1 + \tan^2x - \tan^2y = 1$, which implies $\tan^2x = \tan^2y$. Also, $\sec^2x - \tan^2y = 1$ can be rewritten as $1 + \tan^2x - \sec^2y + 1 = 1$, leading to $\sec^2y - \tan^2x = 1$. Thus, if $xRy$, then $yRx$, so the relation is symmetric.

3. **Transitive:**
Suppose $\sec^2x - \tan^2y = 1$ and $\sec^2y - \tan^2z = 1$. Adding these two equations, we get:
$\sec^2x - \tan^2y + \sec^2y - \tan^2z = 1 + 1$
$\sec^2x + (\sec^2y - \tan^2y) - \tan^2z = 2$
Since $\sec^2y - \tan^2y = 1$, we have:
$\sec^2x + 1 - \tan^2z = 2$
$\sec^2x - \tan^2z = 1$
Thus, if $xRy$ and $yRz$, then $xRz$, so the relation is transitive.

Since the relation is reflexive, symmetric, and transitive, it is an equivalence relation.

More from this Chapter

NUMERICAL
Let $S=\{4,6,9\}$ and $T=\{9,10,11, \ldots, 1000\}$. If $A=\left\{a_{1}+a_{2}+\ldots+a_{k}: k \in \mathbf{N}, a_{1}, a_{2}, a_{3}, \ldots, a_{k}\right.$ $\epsilon S\}$, then the sum of all the elements in the set $T-A$ is equal to __________.
NUMERICAL
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $m$ and $n$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to ___________.
MCQ_SINGLE
Among the relations $S = {(a, b) : a, b \in R - {0}, 2 + \frac{a}{b} > 0}$ and $T = {(a, b) : a, b \in R, a^2 - b^2 \in Z}$,
MCQ_SINGLE
Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$ where each $X_i$ contains $10$ elements and each $Y_i$ contains $5$ elements. If each element of the set $T$ is an element of exactly $20$ of sets $X_i$'s and exactly $6$ of sets $Y_i$'s, then $n$ is equal to:
NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
View All Questions