NUMERICAL
Let $A=\{1,2,3,4,5,6,7\}$. Define $B=\{T \subseteq A$ : either $1 \notin T$ or $2 \in T\}$ and $C=\{T \subseteq A: T$ the sum of all the elements of $T$ is a prime number $\}$. Then the number of elements in the set $B \cup C$ is ________________.
NUMERICAL
Let $A=\{1,2,3, \ldots, 20\}$. Let $R_1$ and $R_2$ two relation on $A$ such that $R_1=\{(a, b): b$ is divisible by $a\}$ $R_2=\{(a, b): a$ is an integral multiple of $b\}$. Then, number of elements in $R_1-R_2$ is equal to _____________.
NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
NUMERICAL
4 Let $A=\{1,2,3\}$. The number of relations on $A$, containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is _________.