NUMERICAL
Let $\mathrm{A}=\{1,2,3,4, \ldots ., 10\}$ and $\mathrm{B}=\{0,1,2,3,4\}$. The number of elements in the relation $R=\left\{(a, b) \in A \times A: 2(a-b)^{2}+3(a-b) \in B\right\}$ is ___________.
NUMERICAL
Let $\mathrm{A}=\{-4,-3,-2,0,1,3,4\}$ and $\mathrm{R}=\left\{(a, b) \in \mathrm{A} \times \mathrm{A}: b=|a|\right.$ or $\left.b^{2}=a+1\right\}$ be a relation on $\mathrm{A}$. Then the minimum number of elements, that must be added to the relation $\mathrm{R}$ so that it becomes reflexive and symmetric, is __________
MCQ_SINGLE
Let $A = {1, 2, 3, ..., 100}$ and $R$ be a relation on $A$ such that $R = {(a, b) : a = 2b + 1}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of $k$ elements of $R$ such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k , for which such a sequence exists, is equal to :
MCQ_SINGLE
Let $A = {1, 3, 4, 6, 9}$ and $B = {2, 4, 5, 8, 10}$. Let $R$ be a relation defined on $A \times B$ such that $R = {((a_1, b_1), (a_2, b_2)): a_1 \le b_2 \text{ and } b_1 \le a_2}$. Then the number of elements in the set R is :