NUMERICAL
Let $S=\left\{p_1, p_2 \ldots, p_{10}\right\}$ be the set of first ten prime numbers. Let $A=S \cup P$, where $P$ is the set of all possible products of distinct elements of $S$. Then the number of all ordered pairs $(x, y), x \in S$, $y \in A$, such that $x$ divides $y$, is ________ .
MCQ_SINGLE
Let $S = {1, 2, 3, …, 10}$. Suppose $M$ is the set of all the subsets of $S$, then the relation $R = {(A, B) : A ∩ B ≠ 𝜙; A, B ∈ M}$ is :